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A.- ABSTRACT
In this paper. a new technique, the multiple ripple propagation technique, is presented

for mapping an h Xw grid into an w xh grid such that the dilation cost is 2. That is. such
that any two neighboring nodes in the first grid are mapped into two nodes in the second
grid that are at most distance 2 apart. This technique is then used as a basic tool for map-
ping any rectangular source grid into a square target grid with the dilation two propertypreserved. The ratio of the number of nodes in the source grid to the number of nodes in. the target grid, called the expansion cost, is shown to be always less than 1.2. This is a

"-.* noticeable improvement over the previously suggested techniques in which the expansion
cost could be bounded by 1.2 only if the dilation cost is allowed to be as high as 18.
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1. Introduction

In this research, we study the problem of squaring up a rectangular grid. That is.

embedding an h Xw rectangular grids into an k xk square grid. where k 1 .h-w 1. and I] is

the ceiling function. The results of this research may be applied to the VLSI design of

highly eccentric circuits that. without squaring up. would have to be laid out in a rectangu-

lar area with a height/width ratio very far from unity [5. 8]. They may also be applied to

the mapping of rectangular problem domains (as for example finite element grids [3, 6])

into mesh connected architectures (1. 71. Mapping of rectangular program graphs into

hypercube architectures may also benefit from this research. Specifically, it has been shown

[4] that this mapping may be accomplished by embedding the graph into a square graph

which is, then, mapped easily to the hypercube.

Two measures may be used to estimate the quality of the embedding. The first meas-

ure is the expansion cost, E, which is the ratio of the number of nodes in the square target

grid to the number of nodes in the source rectangular grid. That is E = k 2/hw.. The other

measure is the dilation cost D, which is a measure of the communication penalty that has

to be paid due to the squaring up. More specifically, if a link X in the source grid connects

two oeighboring nodes, say (i ,j) and (i ,j +1), and these two nodes are mapped to the
A,

nodes (i 'J ') and (i +c ,j '+cj ) in the target grid, then the dilation of the edge X after the

embedding is defined by D () =  I + I cj 1 . The dilation cost of the embedding is then

"-* given by D =max D ().

The best known results for embedding an h Xw grid into the smallest possible k xk

- grid are given in [2], where different embedding methods are suggested for different ranges

of the eccentricity ratio p=w /h. Assuming that h />25, all the methods suggested in [2]

produce embeddings with expansion costs smaller than 1.2. and dilation costs ranging from

2 to 18, depending on the value of p. Specifically, the dilation cost is less than or equal to 3

*i p in cne of the ranges (1,2]. (10/3.41. (8.9]. or (155.o). Otherwise, the dilation cost is

larger than 5.

In this paper. we first introduce, in Section 2. the multiple ripple propagation tech-

nique which may be ,.ed to ernbed an h X-. grid inlto ar "v -'h grid with expansion cost 1

and dilation cost 2. This basic technique is then used in Sections 3 and 4 to embed any
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rectangular grid with p-<.4 into a square grid. The idea is to apply the ripple propagation

technique to carefully chosen subrectangles of the rectangular grid. For grids with p>4.

the ripple propagation technique may be combined with the well known technique of fold-

ing. This is described and analyzed in Section 5. Finally, in Section 6. we summarize our

results and show that, it is always possible to square up any rectangular grid at a dilation

cost of 2 and an expansion cost less than 1.2. This is a clear improvement over the results

given in [2].

2. A multiple ripple propagation technique

The purpose of the technique described in this section is to map an hz Xw grid, which

satisfy

hz < w <,2h (i)

into an w xh grid with unity expansion cost and with dilation cost equal to 2. In order to

accomplish that, the w nodes in each row in the original grid should be compressed to

occupy only h columns. For this, we let I = w -h. and compress 21 nodes from each row

into I columns by repeated rippling. The remaining s = w -21 = 2h -w nodes are left

uncompressed. In Figure 1(b). we show the grid of Fig 1(a) after compressing each of its

rows. As shown in the figure. the positions of the I ripples in each row are chosen as fol-

lows: In the first row, the I ripples are grouped to the right, and in the last row, the 1 rip-

ples are grouped to the left. At each row, one of the ripples that was grouped to the right

in the previous row, starts its propagation to the left (moves one column). The propagation

of that ripple continues at a rate of one column every row until it can no longer propagate.

* The propagation of the ripples is very similar to the motion of the legs of a walking worm.

Figure I(b is laid out to occupy w +s rows and h columns. However, it may be

noticed that s positions in each column is not utilized. This allows for the compression of

Fig 1(b) into an w Xh grid which has a dilation cos, equal to 2 (see Fig 1(c)). In order to be

* .~.* more formal, we let F (i j1 )=(u (i .j ),v Ui j )) be the function which maps each point (i j1

I in the source grid to a corresponding point (u G ,j ).v (i .1)in the target grid. For any node

(1.] in the first row of the source grid, the mapping function F is defined as follows:

N0
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(a) (b) (c)

* Fig 1 - Embedding an 11x16 grid into an 16x11 grid
using multiple ripple propagation

1 orj 1.-

U.1 forj=.s (2.a)
1 u(1e) j 2 for j=s +1 .... w

V j for j = 1.(2.b)
-. "~ ~ 11(1j) for j =s +1,...,w(2b

2

Where rem 0 is the remainder of the integer division. The function F may then be defined
recursively such that, for any node (i j ) not in the first row, F(i ,j ) is specified in terms
of F (i-1,]). In order to simplify the recursive definition of F. we partition the source
grid into four regions as shown in Fig 2 and Fig 3, and we use different recursive formulas
for different regions. Specifically.

[u(i-1,j) + 1 if (i ,j ) Region

u (i ,j) u (i -1,j) + 2=.(i.j) if (i ,j )E Region 3 (3.a)
"" OU(i -1j) + A, .3(i) if (i ,j) E Region 4

v (i -1,j) if (i j) e Region 1

v (ij) = (i -1.j) if (i j ) Region3 (3.b)

1V (i -1) &v .3 (i if (i ,j) e Region 3

Where, A.3 ard . 3 depend on the remainder r (i ,j) = rem ((j -s +i -1)/3). Specifically,

-p% % % 6w4 I %. z



-4-
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Region 1:.) <s-i +2 OR)j >w-i +1+1
Region 2:)j >s +2i-2 OR.) <2i-2s-1
Region 3:. j s-i +2 AND i 4s +2i-2 AND i 4s +1
Region 4:) j 2i-2s-l AND. j <s +2i-2 AND i >s +1

AND j Kw-i+1 +1. 1S

% Fig 2-Partitioning of the source grid for s

s 2! S

SS

21 / 2

21 S

Region 1:.) <s-i +2 OR.j >w-i +z +1 -

Region 2:)j > s +2i1-2 OR.) < 2i -2s -1
Region 3:. j >s-i +2 AND) i s +2i-2 AND i -<s +1

AND)j4 (w - +1 +1.
Region 4: j )>2i-2s-I AND j w...+1 +1 AND i>s +1.

* Fig 3 -Partitioning of the source grid for s > 1

~0 if r(i~j) =2
.3 2 otherwise

1 r if r(ij) =2

SiAy. 0 otherwise

Simlary.if F (i j1 rem (Qj-2i +2s +2)/3). then

03 if F(i j)=2
A.A 2 otherwise

1 J if F(i j ) =2
0, otherwise

V V.



Given the above formulas, the following theorem proves that the dilation cost of the

mapping F is at most two.

Theorem: For any (i J ). where i ,J > 1. the following is true

lu(i.j)-u(i-I.j)l + Iv(ij)-v(i-l~j)I < 2 (4.a)

and

tu(i~j)-u(i,j-1) + iv(i.j)-v(i.j-1) 4< 2 (4.b)

That is, any two adjacent nodes in the source grid are mapped into two nodes that are not

more than a distance two apart in the target grid.

Proof: The proof of (4.a) is straight forward if (i J ) is in Region 1 or Region 2. If (i J) is

" in region 3, then the left side of (4.a) reduces to I A, .3(i j ) I + I A , 3(i .j ) I. which is equal

to 1 if r (i ,j )=2. and to 2 otherwise. The case (i J )e Region 4 is similar.

To prove (4.b) we use induction on i. For i =1, the proof is by direct substitution

from equations (2). Next, assuming that (4.b) holds for i -1, we should show that it also

holds for i. Again the induction proof is straight forward if (i ,j ) is in Regions 1 or 2. and

is similar if (i ,j) is in Regions 3 and 4. For this reason we will consider in the rest of this

proof only the case in which (i ,J)e Region 3. For this case. we will prove, by induction, a

more restrictive form of (4.b), namely

(i ,J ) - U(i j- -) = I if r(i j )=2
if r (G J )=0 or I 5a

v(i,j) - vU(i,j--1) = 0 if r U, J)=2 (5.b)

I if r (i ,J )=0 or 1 (5.b)

For i =2, equation (5) is proved directly from equations (2) and (3). To prove the

induction step. we notice that if (i 1) is in Region 3. then (i ,J-1) is either in Region 3 or

in Region 1. We first assume that (i ,j-1) is in Region 3 and use (3) to obtain

u (i .j) - u (i ,j-1) = u (i -1j) -u (i -1,j-1) + A.. 3(i ,j) - A..3(i J-1) (6.a)
v (i ,J) - v(i .j-1) = v(i-1.j) v(i-lj-1) - Av. 3 (i j) + A,. 3(i .j-1) (6.b)

If r(i j)=2, then A ,3(i .J )=o and Au, 3(i,j-1)=2 because r(i j-1)-1. Also.

r(i-.j)=l. which, from the induction hypothesis. gives u(i-l.j)-u(i-j-1)=1.

Therefore, from (6.a) we have u(i .j)-u(i,-1)=l+O-2=-1. Similarly, A,,. 3(i ,j)=.

A.3( .j-i -0 = 0 and v -1,j )-u(i-1j-1)=1. from which we obtain
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V (i j )-v (i j -i)=1-1+0=0. The same type of argument applies if r (i ,j )=0 or 1.

Finally. if (i ,j -1) is in Region 1. then j =s -i +2 and thus. r (i j )=1. From (3.a), we

get u(; .j)-u(i ,j-1) - u(i-l.j)-u(i-.j-1)+2-1 and from (3.b) we get

v ( ,j)-v (i j -1) = v (i -1,j )-v (i -lj-1). But both G ,-l,j) and (i-,j -1) are in

Region 1, and thus u (i -1.j )=u (i -1j -1). and v (i -1j )=v (i -1.j-1)+1, which proves

(5.a) and (5.b), respectively.(]

The above theorem proves that it is possible to map an h Xw grid. h <w -<2h, exactly

into an w Xh grid with dilation cost 2. It is also possible to concatenate the w xh target

grid with its symmetric image (reflected across the line v =h ) to obtain an exact embedding

of an h x2w grid into an w x2h grid with dilation cost 2. Along the same line of thinking,E

an h X2w +1 source grid may be divided into an h Xw +1 and an h Xw subgrids. These two

subgrids may then be embedded into an w +1Xh and an w Xh grids, respectively, and by

concatenating the former with the symmetric image of the latter, we may obtain an

w +lx2h target grid. The dilation cost at the line of concatenation may be shown to be at

most two. Grid concatenations of the type described here will be used repeatedly and

tacitly in the rest of this paper.

In the following sections, we apply the above technique to our original problem of

.* mapping an h Xph rectangular grid (p is assumed to be greater than unity), into a square

grid. First, two basic methods are introduced for grids with p<4. These methods are then

combined with folding and applied effectively to the embedding of any grid with p>4.

3. The method of exact row fitting.

* Let k, k >h be the dimension of the square grid (called the target grid) onto which

the given h xph grid (called the source grid) is to be mapped. Of course, it is desirable to

chose the smallest possible k in order to minimize the expansion cost E = k 2/ph 2. Given

* such a k, the method of exact row fitting assumes that the right most h xk subgrid of the

source grid may be mapped exactly into the k xh right most subgrid of the target grid (see

Fig 4). This is possible if and only if condition (1) is satisfied. That is

h 1< k K 2h (7.a)

Moreover, if
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(a) (b)
% Fig 4 - Embedding an 7xl 1 grid into an 9X9 grid

*using the method of exact row fitting

k -h > ph -k (7.b)

that is, the number of columns. k -h, remaining in the target grid is at least equal to the

number of columns, ph -k , remaining in the source grid, then these columns may be

mapped in a trivial way with dilation cost 2. In other words, the mapping may be com-

pleted with dilation cost 2 provided that the size of the target grid, k, satisfies the condi-

tions (7.a/b).

The solution of the inequalities (7.a/b) may be found by, first, computing the

minimum k that satisfies (7.b), and then checking that this value is consistent with (7.a).

Specifically, (7.b) is satisfied if
-.

k = K + hJ (8)

0 It is straight forward to check that the value of k given by (8) satisfies (7.a) if

p ,3 - 1/h. Hence, the method of exact row fitting may be applied only if p-43 - 1/h.

Noting that Kr , ((p+1)h + 1)/2, we may obtain an upper bound on the expansion cost of

* the resulting embedding. Namely,

K 2 (p+ + -)2

r h'

E (Er+ I 4 (9).. p 4p

The value of Er increases monotonically with p for p> 1+1/h, and hence may exceed

1.2 for large values of p. For example, assuming h 12, then Er >1.2 if p> 2.06. Moreover,

U.-,

-V.. ,.) , ;:- . - .. :N



if p>3-1/h, the method may not be applied. In these cases, the method of exact column

fitting, described in the following section. can be used.

4. The method of exact column fitting

The embedding technique used in this section is based on the vertical disection of both

the source and the target grids, each into two subgrids which are as equal as possible. Each

of the source subgrids is then embedded into the corresponding target subgrid in a way that

ensures that all the columns of the target grid are efficiently used. In order to deal with the

case of ph being an odd integer, the number of columns in the two source subgrids is taken

to be [ph /21 and [ph /21. respectively, where [J is the floor function. For the same reason.
p.

the number of columns in the target subgr.d is divided into jk /21 and 1k /21 columns, respec-

. tively (see Fig 5).

The optimal size. k =K. of the target grid should be determined by the embedding of

h x[ph /21 - k x[k /21 or the embedding h xlph /21 -k xk /21, whichever gives a more strict

condition on k . It turns out that the latter embedding is more restrictive than the former,

and hence, should be used to derive k. In the remaining of this section, we will denote the

h x[ph /21 grid by G,. and the k x[k /21 grid by Gt, and we will describe an embedding of

G, into G,. The embedding of the other half of the source grid (the h X~ph /21 subgrid) into

the other half of the target grid (the k x[k /21 subgrid) may be accomplished in a similar

fashion.

:1 -- -- -: ----, --- --. N'--_-_
2- 1 hj k

(a) (b)

Fig 5 -Embedding an 7x15 grid into an 11X1l grid
using exact column fitting

" " , . - , - r , .,-',,-v
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Consider the upper 1k /2] x Iph /21 subgrid of G, and embed it into the upper

-e %. [ph /2] x ]k /21 subgrid of G, using the rippling propagation technique of Section 2. In order

to accomplish this embedding we should have

and.k /21 < h (10.a)

-- ,' and condition (1) should be ';z;isfied, namely

,- lk/21 < [ph/21 < 2 lk/2] (10.b)

With this, each of the remaining h - 1k /21 rows in G, may then be compressed to

have the same pattern as the last row of the [ph /2] X 1k /2] - [k /21 x [ph /21 embedding.

This results in a dilation cost equal to 2 and requires 2(h -1k /21) additional rows in G,.

Thus. the following should be satisfied

k - [ph/21 < 2 (h - Ik/21) (10.c)

%_. Noting that (x + l)/2 > [x /21 >: (x -1)/2. we may calculate the minimum value of k X'hich

always satisfies (lOc). Namely.

k K [ph/2 + 2h + 1 (1)

This value of KX satisfies the conditions (10.a) and (10.b) as long as p-<4.

N: With the value of k given by (11). the two halves of the source grid may be success-

fully embedded into the two halves of the target grid with dilation cost 2. Noting that

Ix /41 (x +3)/4 . it is possible to bound the expansion cost of the embedding as follows:

e"."(p+4+-1)2
,.,, E , h<g,,a (12)

'Maxa 16p
-

expansion cost

2.

Er EC

2.3/h 4 centricity

Fig 6 - Expansion cost Vs eccentricity for I <p-<4 (h =20)

For 1 <p4. the value of E, is monotonically decreasing with p. which suggests the

use of the method of fitting columns whenever the method of fitting rows fails to satisfy

-'7.
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Er -' 1.2 (see Fig 6). The critical value of p that determines which of the two methods has a

smaller expansion cost may be found by solving Er,, =E, . From (9) and (12), this

gives p = 2+3/h. The expansion cost at this value of p is (3h +4) 2/(4h (2h +3)). which is

always smaller than 1.2 if h > 17.

4, Hence, for 1 <p4<4. the most efficient embedding method depends on the value of p.

Specifically, if p<2+3/h, then the methods of exact row fitting should be used, otherwise,

- the method of exact column fitting should be used. For values of p larger than four, the

above methods can be combined with the known method of folding [2] as described in the

next section.

'5. Combining ripple propagation with folding.

If p = (q +1)2 for some integer q >1. then the source grid may be folded q +1 times to

fit exactly an (q +)h x (q +1)h target grid. In fact, it is easy to show that if

(q +1)2 <p < (q +1) 2  
013.a)

1.2
for some integer q > 1. then folding the source grid into an (q +I )h X (q +I )h target grid

will result in an expansion cost less than 1.2. In Fig 7, we illustrate the technique of fold-

ing by an example. As clear from this figure, successive tracks (a track consists of h con-

secutive rows of the target grid) are joined by two h xh corner tiles that guarantee a dila-

tion cost equal to two.

- track I (h rows)

I - I track 2 (h rows)

corner

-'I

%tie

- I

-a Fig 7 - Folding an 5X40 grid into an 15x15 grid

SI

As described above, folding may result in few unused columns in the last track of the

...

-S _ _
a. , ~w ? -SSSS aSSI- - '" I S ' ~ .. 1 'iU .~ *.V- %.Vcorner~. 

, ~'



target grid, and condition (13.a) limits the number of these unused columns. It is also pos-

sible to apply folding and leave some rows of the target grid unused. More precisely, if the

eccentricity of the source grid satisfies

q2 <p < 1.2q 2  (13.b)

then, it is possible to fold this grid into an ph /q X ph /q target grid. This will leave

(rho -q 2)h /q unused rows in the target grid, and condition (13.b) will guarantee that the

number of unused rows does not exceed 0.2qh. Thus, the expansion cost will be less than

1.2.

5.1. Combining folding with exact row fitting

A Consider an h Xph source grid which satisfies 1.2q 2 < p< (q +1)2/1.2. Clearly, fold-

ing this grid into a square grid is too expensive (expansion cost larger than 1.2) because nei-

*ther (13.a) nor (13.b) is satisfied. In this section, we introduce a method which combines

folding and exact row fitting. This method will be denoted by FR. In order to describe the

FR method we assume that the source grid is to be embedded into a target grid of size k,

where k satisfies qh k (q +1)h. The embedding starts by folding the source grid into

the target grid q times as shown in Fig 8(a). Clearly, the right most h x (ph -qk ) subgrid

4, of the source grid will not fit into the target grid, and the last k -qh rows of the target grid

A-' will be unused. The idea is to consider the last track resulting from the folding (an

h x ph -(q -1)k grid denoted by G,), and to squeeze it into an k -(q -1)h X k grid

(denoted by G, ) that fits the target grid.
,

k

4'. __ ___.__ __ __ __

4. P") h-qk

I I I I

%C
G4G _________ k-q,-,0 G

t'O 0 t.3

h -Ph-(q-l)k-h h k-h

(a) (b)

Fig 8 - Combining folding with exact row fitting (q =4. and P =4)

II
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The squeeze is performed by partitioning G, vertically into P subgrids GS.o,

G, . and partitioning G, vertically into P subgrids. G, o G, .-1, and then mapping

each G,., into the corresponding Gt,,. The partitioning of G, is such that G1,s., is an h xh

grid and each remaining G,., i =1....-P-1 is an h x [(ph-(q -1)k -h )/(P-1)] grid. Note

that if ph-(q-1)k -h does not divide P-1 then G5 .- l will have few empty columns.

Similarly. the partition of G, is such that G, o is an k -(q -1)h x h grid and each of the

remaining Gt ,. i =1..... P-1 is an k -(q -1)h X 1(k -h )(P-) grid.

The method of exact row fitting introduced in Section 3 is used to map each G, ,.

i =1 ..... -1, into the corresponding G, .. As for the mapping G .o - G,,0 . it should ensure

that the transition from track q -1 to track q does not increase the dilation cost beyond

two. This may be accomplished by expanding the h xh corner tiles (see Fig 7) into an

k -(q -1)h xh pattern that fits G,,o such that the distribution of the h nodes in the last

column of G, 0o is similar to the distribution of the h nodes in the first column of Gt,,. It

may be shown that such an expansion is always possible with dilation cost not exceeding

two.

F P- ( 1 LP-1 j

Sk-(9- )h . . . . . . . . .

4- 4 - k-q1)"- 1 - .- --

0 1
(a) WA

Fig 9 - Mapping G,,i into G,j in the FR method

In order to compute the optimum size k of the target grid, we follow the same reason-

ing as in section 3. Specifically, the method of exact row fitting may be used for mapping

any G5  into the corresponding G,j. For this, the following conditions should be satisfied

(refer to Fig 9):

h 4T 1kh 04a
P-1
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h < k -(q-l)h < 2h (14.b)
k'lh > (p-1)h -(q -1)k] (k -(q -1)h )(14.0)
- 1 - P-1

In order to solve the above system of inequalities, we first find the minimum value of

k which always satisfies (14.c). This value is:

k =Kfr -(p + q (P -1)) h + 2(P -2) 1(5
q +P-1

By substituting (15) in (14.a) and (14.b). we conclude that these two conditions are

satisfied, respectively if

p >,P + q -P 4- (P+q-3) (P-2) (16.a)
h

and

p < q(q +l) + P-1- 3P+q-6 (16.b)
h

Hence, given any rectangular grid, the method may be used if there exists a P that

- satisfies (16). The number of partitions P also affects the expansion cost. More precisely,

from (15). we find that Kr -<((ph +q (P-1)h +3P +q -6)/(q +P-1), which may be used to

bound the expansion cost by
"I

Efr <Ef ', - (p+q(P-1) + (3P +q-6)/h )2  (17)
(P +q -1) 2 p

The derivative 8Ef /OP is negative for p.>q 2 which means that, from the point of view

of minimizing Efr. it is advantageous to find the maximum P which satisfies (16). For

P >q, the two conditions (16.a) and (16.b) may not be satisfied simultaneously. If, how-

ever, p is in the range

q2 + (qg-2)(2qg-3) 4< p 4 (q +1) 2 -2 - 4q-6
h h (

then. (16.a/b) are satisfied for Pq. and hence the embedding may be completed with q

partitions in a target grid whose size is given by (15). The maximum expansion cost may

* then be found by substituting P =q in (17) to obtainI.E
" E(p+q (q -1) + (4q -6)/h )2,',Eft 4 EfWX = (19)
- (2q -1) 2 p

In Section 6. it will be shown that, for q >3. Efr is smaller than 1.2 for any p in the

range specified by (18). and that. outside that range, p satisfies (13.a) or (13.b), which

means that folding may be used with expansion cost less than 1.2. The case q =2. however.

0i
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is slightly more complicated. For instance, if h t>20, then. folding is too expensive in the

range 5.854p<7.5 (expansion cost is larger than 1.2). Also in t _,. range, the FR method

either does not apply (if p> 6 .9) or gives Eft > 1.2 (if 5.85<p<6.9). In this case, combining

folding with the method of exact column fitting (the FC method) turns out to be useful.

Although we only need this combination for q =2, the FC method will be described in the

next section for general q. The reason for doing so is that for q >' 3. although both the FC

and the FR methods realize an expansion cost less than 1.2. it will be shown that the FC

method gives better results than the FR method for some subranges of p.

5.2. Combining folding with exact column fitting

In this method, denoted from now on by FC. the source grid is folded into the target

grid as described in the previous section, and also each of G, and G, is partitioned into P

subgrid. The FC method is different from the FR method in that each subgrid Gs.,,

i =1 ....P-1. is mapped into the corresponding G ,i using the method of exact column fitting

rather than exact row fitting.

The conditions that have to be satisfied in order to map G,, into G', using exact

% column fitting are analogous to the conditions (10.a/b/c) of Section 4. Specifically, these

conditions are (refer to Fig 10):

_ [(p-l)h -(q -1)k] 14 k -(q -1)h (20.a)

P-1

( 2 (20.b)
lk--h -I (p-h -(q -k >4 2 (h - hj (20.b)

P-1 P-1

"The same technique that was used in the last sections is applied to the solution of the

above inequalities. From (20.c), the minimum size of the target grid is found to be

k = K (p+qP+P-q)h + 3(P-2) (21)P+q

By substituting (21) in (20.a) we obtain the condition

p < p 2 -p +q + (P +q-3)(P-2)/h

which may be satisfied only if P >q. Also. by using (21) to compute the expansion cost

Eta. and then differentiating the resulting formula, we find that OEc 16P is positive for

p< p2_p +q. This means that using P =q +1 partitions will give the best expansion cost.

I,
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-l)h-(q-1)k

I-1

.1 I
h k-(q-1'

N"

(a) (b)

Fig 10 - Mapping G,.i into G,.i in the FC method

Now using P=q +1 in (21), and substituting the result in (20.a) and (20.b). we find that

these conditions are satisfied if p lies in the following range

q 2 +1 + 3(q-1) 1<p -< (q+1) 2 -1 ( q-1)2 (22)
h qh

That is, the FC method may be applied if p satisfies (22). The expansion cost may then be

computed from (21) with P =q +1. The upper bound on this cost is given by

f E1  .Ec,,:  - (p+q ( q +1)+1 + (5q -3)/h ) 2  (23)
(2q +1) 2 p

6. Discussion and conclusion

Given an h Xph source grid, let q be the integer that satisfies q <p<(q +1)2. For

q =1, it has been shown in Sections 3 and 4 that the mapping of the source grid into a

square rectangular grid may 'be accomplished by using the method of exact row fitting if

p<2+3/h. or the method of exact column fitting if p>2+3/h. In both cases, the expansion

cost is proven to be less than 1.2.

* For. q >2. the FR or the FC methods described in Section 5 may be applied provided
.. that Pi < P<P2. where the critical values p, and P2 are specified from (18) and (22).

08 .
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Namely,

Pi_ (qg-2)(2qg-3) (4ah Pl = q2+(24.a)I h
-2 (q +1 1 - 1)2 (24.b)

qh
In order to determine which of the two methods gives a smaller expansion cost, we notice

from (19) and (23) that. for p>0, Efr /ax and Ef, , intersect at only one point, namely

P3 
= q (q +1) - - + 2 2 -3+9 (24.c)

2 2h

We also observe that both Eft ,,.x and Ec ,, are of the form f (p)=(p+a )2/(b p). for some

constants a and b. Given that, for p>0. the function f has only one local minima at p=a.

we may determine that E) ,,, has its local minima at pfr=q(q-1)+(4q-6)/h, and

" Ef,, has its minima at Pf, =q (q +1)+1+(5q -3)/h. Clearly, pf, is smaller than pi for

h > 4. and p1 e lies between p, and P2. This leads to the conclusion that Ef,. <Efr,, if

P, P>fP and Ef, > E, , if P<P3, In Figure 11, both Ef, ,x and Ef,, are plotted for

J5,*q =2. h =20, and for q =4. h =10.

Hence, if p lies between p, and P3 , the FR method is recommended, and if p lies

between P3 and P2. then the FC method is recommended. If this strategy is applied, then the

largest expansion cost occurs at either P=P2 or p=p3 . By direct substitution of (24.b) and

(24.c) into (23). and after simple algebraic manipulation, it may be shown that, for h > 18,

the value of E .zx is less than 1.2 at P2 and p3.

Neither the FR method nor the FC method may be applied if p is less than pi or larger

than P2. However, in these two cases, the expansion cost resulting from simple folding is

low because p is close enough to q 2 and (q +1)2, respectively. In fact, if P-P1, then

p<q2(l+2/h ). which satisfies (13.b) if h > 10. Also. if P.>P2, then p.>(q +1) 2(1-1/qh )-I.

which satisfies (13.a) if h >10. In other words, the application of simple folding in these

two regions will result in an expansion cost less than 1.2.

In brief, new techniques have been presented and analyzed in this paper, for embed-

ding an h xph rectangular grid into a square grid with dilation cost equal to two. The most

appropriate technique for a given grid have been shown to depend on the size of that grid.

that is on h and p. By adhering to the selection strategy suggested in the paper, the expan-

0
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expansion cost

1.3 I.

/

/

, ElE

1.1

/ -4 10 / 9 eccentricity

(a) q =2. h =20

-U. expansion cost

" Folin" /\ Folding

1.

,e..16 25 eccentricity

I
a
.

S(b) q =4. h =10

Fig I I Expansion cost for q p < (q + 1)1

55: sion cost is guaranteed to be smaller than 1.2 if h is larger than or equal to 18.
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